图的实现
所谓图就是节点及其连接关系的集合。所以可以通过一个一维数组表示节点,外加一个二维数组表示节点之间的关系。
//图的矩阵实现 typedef struct MGRAPH{ nodes int[]; //节点 edges int[][]; //边 }mGraph;
然而对于一些实际问题,其邻接矩阵中可能存在大量的0值,此时可以通过邻接链表来表示稀疏图,其数据结构如图所示
其左侧为图的示意图,右侧为图的邻接链表。红字表示节点序号,链表中为与这个节点相连的节点,如1节点与2、5节点相连。由于在go中,可以很方便地使用数组来代替链表,所以其链表结构可以写为
package main import "fmt" type Node struct{ value int; //节点为int型 }; type Graph struct{ nodes []*Node edges map[Node][]*Node //邻接表示的无向图 }
其中,map为Go语言中的键值索引类型,其定义格式为map[<op1>]<op2>,<op1>为键,<op2>为值。在图结构中,map[Node][]*Node表示一个Node对应一个Node指针所组成的数组。
下面将通过Go语言生成一个图
//增加节点 //可以理解为Graph的成员函数 func (g *Graph) AddNode(n *Node) { g.nodes = append(g.nodes, n) } //增加边 func (g *Graph) AddEdge(u, v *Node) { g.edges[*u] = append(g.edges[*u],v) //u->v边 g.edges[*v] = append(g.edges[*v],u) //u->v边 } //打印图 func (g *Graph) Print(){ //range遍历 g.nodes,返回索引和值 for _,iNode:=range g.nodes{ fmt.Printf("%v:",iNode.value) for _,next:=range g.edges[*iNode]{ fmt.Printf("%v->",next.value) } fmt.Printf("\n") } } func initGraph() Graph{ g := Graph{} for i:=1;i<=5;i++{ g.AddNode(&Node{i,false}) } //生成边 A := [...]int{1,1,2,2,2,3,4} B := [...]int{2,5,3,4,5,4,5} g.edges = make(map[Node][]*Node)//初始化边 for i:=0;i<7;i++{ g.AddEdge(g.nodes[A[i]-1], g.nodes[B[i]-1]) } return g } func main(){ g := initGraph() g.Print() }
其运行结果为
PS E:\Code> go run .\goGraph.go 1:2->5-> 2:1->3->4->5-> 3:2->4-> 4:2->3->5-> 5:1->2->4->
BFS
广度优先搜索(BFS)是最简单的图搜索算法,给定图的源节点后,向外部进行试探性地搜索。其特点是,通过与源节点的间隔来调控进度,即只有当距离源节点为 k k k的节点被搜索之后,才会继续搜索,得到距离源节点为 k + 1 k+1 k+1的节点。
对于图的搜索而言,可能存在重复的问题,即如果1搜索到2,相应地2又搜索到1,可能就会出现死循环。因此对于图中的节点,我们用searched对其进行标记,当其值为false时,说明没有被搜索过,否则则说明已经搜索过了。
type Node struct{ value int; searched bool; } /*func initGraph() Graph{ g := Graph{} */ //相应地更改节点生成函数 for i:=1;i<=5;i++{ g.AddNode(&Node{i,false}) } /* ... */
此外,由于在搜索过程中会改变节点的属性,所以map所对应哈希值也会发生变化,即Node作为键值将无法对应原有的邻接节点,所以Graph中边的键值更替为节点的指针,这样即便节点的值发生变化,但其指针不会变化。
type Graph struct{ nodes []*Node edges map[*Node][]*Node //邻接表示的无向图 } //增加边 func (g *Graph) AddEdge(u, v *Node) { g.edges[u] = append(g.edges[u],v) //u->v边 g.edges[v] = append(g.edges[v],u) //u->v边 } //打印图 func (g *Graph) Print(){ //range遍历 g.nodes,返回索引和值 for _,iNode:=range g.nodes{ fmt.Printf("%v:",iNode.value) for _,next:=range g.edges[iNode]{ fmt.Printf("%v->",next.value) } fmt.Printf("\n") } } func initGraph() Graph{ g := Graph{} for i:=1;i<=9;i++{ g.AddNode(&Node{i,false}) } //生成边 A := [...]int{1,1,2,2,2,3,4,5,5,6,1} B := [...]int{2,5,3,4,5,4,5,6,7,8,9} g.edges = make(map[*Node][]*Node)//初始化边 for i:=0;i<11;i++{ g.AddEdge(g.nodes[A[i]-1], g.nodes[B[i]-1]) } return g } func (g *Graph) BFS(n *Node){ var adNodes[] *Node //存储待搜索节点 n.searched = true fmt.Printf("%d:",n.value) for _,iNode:=range g.edges[n]{ if !iNode.searched { adNodes = append(adNodes,iNode) iNode.searched=true fmt.Printf("%v ",iNode.value) } } fmt.Printf("\n") for _,iNode:=range adNodes{ g.BFS(iNode) } } func main(){ g := initGraph() g.Print() g.BFS(g.nodes[0]) }
该图为
输出结果为
PS E:\Code\goStudy> go run .\goGraph.go 1:2->5->9-> 2:1->3->4->5-> 3:2->4-> 4:2->3->5-> 5:1->2->4->6->7-> 6:5->8-> 7:5-> 8:6-> 9:1-> //下面为BFS结果 1:2 5 9 2:3 4 3: 4: 5:6 7 6:8 8: 7: 9:
DFS
深度优先遍历(DFS)与BFS的区别在于,后者的搜索过程可以理解为逐层的,即可将我们初始搜索的节点看成父节点,那么与该节点相连接的便是一代节点,搜索完一代节点再搜索二代节点。DFS则是从父节点搜索开始,一直搜索到末代节点,从而得到一个末代节点的一条世系;然后再对所有节点进行遍历,找到另一条世系,直至不存在未搜索过的节点。
其基本步骤为:
- 首先选定一个未被访问过的顶点 V 0 V_0 V0作为初始顶点,并将其标记为已访问
- 然后搜索 V 0 V_0 V0邻接的所有顶点,判断是否被访问过,如果有未被访问的顶点,则任选一个顶点 V 1 V_1 V1进行访问,依次类推,直到 V n V_n Vn不存在未被访问过的节点为止。
- 若此时图中仍旧有顶点未被访问,则再选取其中一个顶点进行访问,否则遍历结束。
我们先实现第二步,即单个节点的最深搜索结果
func (g *Graph) visitNode(n *Node){ for _,iNode:= range g.edges[n]{ if !iNode.searched{ iNode.searched = true fmt.Printf("%v->",iNode.value) g.visitNode(iNode) return } } } func main(){ g := initGraph() g.nodes[0].searched = true fmt.Printf("%v->",g.nodes[0].value) g.visitNode(g.nodes[0]) }
结果为
PS E:\Code> go run .\goGraph.go 1->2->3->4->5->6->8->
即
可见,还有节点7、9未被访问。
完整的DFS算法只需在单点遍历之前,加上一个对所有节点的遍历即可
func (g *Graph) DFS(){ for _,iNode:=range g.nodes{ if !iNode.searched{ iNode.searched = true fmt.Printf("%v->",iNode.value) g.visitNode(iNode) fmt.Printf("\n") g.DFS() } } } func main(){ g := initGraph() g.nodes[0].searched = true fmt.Printf("%v->",g.nodes[0].value) g.visitNode(g.nodes[0]) }
结果为
PS E:\Code> go run .\goGraph.go 1->2->3->4->5->6->8-> 7-> 9->
以上就是Go语言语言编程学习实现图的广度与深度优先搜索的详细内容,更多关于go语言实现图的广度与深度优先搜索的资料请关注M135模板网其它相关文章!
文章声明:以上内容(如有图片或视频在内)除非注明,否则均为模板汇原创文章,转载或复制请以超链接形式并注明出处。
本文作者:管理本文链接:https://baijiaci.com/news/2176.html